

Republic of the Philippines

Department of Environment and Natural Resources

Visayas Avenue, Diliman, Quezon City Tel Nos. 929-6626 to 29; 929-6633 to 35

Website: http://www.denr.gov.ph / E-mail: web@denrgov.ph OUPPIA Tel. No. 928-1186 and 928-1195 email address: oueiea.denr@gmail.com Voice-Over-Internet-Protocol (VOIP) Trunkline (632)7553330 local 1068

MEMORANDUM

TO

All Bureau Directors

All Regional Executive Directors

FROM

The Undersecretary

Policy, Planning and International Affairs

SUBJECT

LETTER ON NOMINATION OF CITIES AND MEMBERS

OF SELECTION PANEL FOR THE 5^{TH} ASEAN ESC AWARD AND 4^{TH} CERTIFICATE OF RECOGNITION

2021

DATE

26 January 2021

May we respectfully refer a copy of the email dated 14 January 2021 sent by Putri Ari Hendra Murti, ASEAN Secretariat, forwarding a copy of the letter from Dr. Vong Sok, Head Environment Division, Sustainable Development Directorate, ASEAN Socio-Cultural Community Department, regarding the Nomination of Cities and Members of Selection Panel for the 5th ASEAN ESC Award and 4th Certificate of Recognition 2021.

The ASEAN Secretariat is requesting for nominations of cities and members of the selection panel for the 5th ASEAN Environmentally Sustainable City (ESC) Award and 4th Certificate of Recognition. Please note the ASEAN ESC Award mechanism for consideration: (i) each AMS to nominate one city to receive the award (ii) AWGESC to use the most updated ASEAN Key Indicators for Clean Air, Clean Land and Clean Water along with Singapore Index on Biodiversity (SI) as bonus indicator for the assessment of cities.

In view of this, kindly endorse respective nominees with duly completed forms and enclosures (photos or videos) and submit to the Office of the Director, Policy and Planning Service for review/consolidation on or before 10 March 2021.

For your information and consideration.

ATTY. JONAS R. LEONES

cc:

The Assistant Secretary

Policy, Planning and Foreign Assisted and Special Projects

The Director, Policy and Planning Service

MEMO NO.2021-78

Let's Go Green!!!

OUEIEA Secretariat <oueiea.denr@gmail.com>

[AWGESC] Letter on Nomination of Cities and Members of Selection Panel for the 5th ASEAN ESC Award and 4th Certificate of Recognition 2021

Thu, Jan 14, 2021 at 5:12 PM Putri Ari Hendra Murti <putri.murti@asean.org> To: "nagu@kasa.gov.my" <nagu@kasa.gov.my>, "sugumari@kasa.gov.my" <sugumari@kasa.gov.my>, "norhaliza@kasa.gov.my" <norhaliza@kasa.gov.my>, "saifuddin@kasa.gov.my" <saifuddin@kasa.gov.my>, "suhana@kasa.gov.my" <suhana@kasa.gov.my>, "fakhruddin@kasa.gov.my" <fakhruddin@kasa.gov.my>, "yusmazy@kasa.gov.my" <yusmazy@kasa.gov.my>, "norizan@kasa.gov.my" <norizan@kasa.gov.my> "jastre.brunei@env.gov.bn" <jastre.brunei@env.gov.bn>, "martinah.tamit@env.gov.bn" <martinah.tamit@env.gov.bn>, "mosaidi.said@env.gov.bn" <mosaidi.said@env.gov.bn>, "rodziah.adnan@env.gov.bn" <rodziah.adnan@env.gov.bn>, "athifa.abdullah@env.gov.bn" <athifa.abdullah@env.gov.bn>, "haryanti.petra@env.gov.bn" <haryanti.petra@env.gov.bn>, "noorhadini.saini@env.gov.bn" <noorhadini.saini@env.gov.bn>, "monyneath0777@gmail.com" <monyneath0777@gmail.com>, "sokharavuth@online.com.kh" <sokharavuth@online.com.kh>, "dykiden@yahoo.com" <dykiden@yahoo.com>, "kampongspeu@yahoo.com" <kampongspeu@yahoo.com>, "machansethea@yahoo.com" <machansethea@yahoo.com>, "seylasok@gmail.com" <seylasok@gmail.com>, "taharnovrizal@gmail.com" <taharnovrizal@gmail.com>, "ntaharn@yahoo.com" <ntaharn@yahoo.com>, "us.sidik@gmail.com" <us.sidik@gmail.com>, "dyahpoerwayanti@gmail.com" <dyahpoerwayanti@gmail.com>, "tyasning_p@yahoo.co.id" <tyasning_p@yahoo.co.id>, "hani_kris@yahoo.com" <hani_kris@yahoo.com>, "phouthala@yahoo.com" <phouthala@yahoo.com>, "Chanthalao@hotmail.com" <Chanthala-o@hotmail.com>, "Nalinh.ka@gmail.com" <Nalinh.ka@gmail.com>, "s.vilavong_ems@yahoo.com" <s.vilavong_ems@yahoo.com>, "ammleeycdc@gmail.com" <ammleeycdc@gmail.com>, "Hlahlahtwe76@gmail.com" <Hlahlahtwe76@gmail.com>, "pcd.ecd.mm@gmail.com" <pcd.ecd.mm@gmail.com>, "Thinthinsoe7772@gmail.com" <Thinthinsoe7772@gmail.com>, "moemoemechanical@gmail.com" <moemoemechanical@gmail.com>, "viosorio@yahoo.com" <viosorio@yahoo.com>, "vizminda_osorio@emb.gov.ph" <vizminda_osorio@emb.gov.ph>, "consolacioncrisostomo@yahoo.com" <consolacioncrisostomo@yahoo.com>, "consolacion_crisostomo@emb.gov.ph" <consolacion_crisostomo@emb.gov.ph>, "ortegarq71@yahoo.com" <ortegarq71@yahoo.com>, "Daryl_GOMES@nea.gov.sg" <Daryl_GOMES@nea.gov.sg>, "Alexander_lim@nea.gov.sg" <a href="mailto: <a href=" <Simret_KAUR@nea.gov.sg>, wendy_yap <wendy_yap@nparks.gov.sg>, "jeremy_woon@nparks.gov.sg" <jeremy_woon@nparks.gov.sg>, "in_dhira@hotmail.com" <in_dhira@hotmail.com>, "pimdomrongphol@yahoo.com" <pimdomrongphol@yahoo.com>, "onep.uem@onep.go.th" <onep.uem@onep.go.th>, "nutch.kk@gmail.com" <nutch.kk@gmail.com>, "nutch_kk@hotmail.com" <nutch_kk@hotmail.com>, "onep.uem@gmail.com" <onep.uem@gmail.com>, "nmcuong68@gmail.com" <nmcuong68@gmail.com>, "asoenvietnam@vea.gov.vn" <asoenvietnam@vea.gov.vn>, "maintp@vea.gov.vn" <maintp@vea.gov.vn>, "lenga@vea.gov.vn" <lenga@vea.gov.vn> Cc: "zaini@kasa.gov.my" <'zaini@kasa.gov.my'>, "suharmi@kasa.gov.my" <'suharmi@kasa.gov.my'>, "siti@kasa.gov.my" <'siti@kasa.gov.my'>, "nagu@kasa.gov.my" <'nagu@kasa.gov.my'>, "norizan@kasa.gov.my" <'norizan@kasa.gov.my'>, "rosmahyuddin@kasa.gov.my" <'rosmahyuddin@kasa.gov.my'>, "asfia@kasa.gov.my" <'asfia@kasa.gov.my'>, "jamalulail@kasa.gov.my" <'jamalulail@kasa.gov.my'>, "azlinabh@kasa.gov.my" <'azlinabh@kasa.gov.my'>, "jastre.brunei@yahoo.com" <'jastre.brunei@yahoo.com'>, "jastre.brunei@env.gov.bn" <'jastre.brunei@env.gov.bn'>, "norharniah.jumat@env.gov.bn" <'norharniah.jumat@env.gov.bn'>, "norimtihan.razak@gmail.com" <'norimtihan.razak@gmail.com'>, "halimah.tuah@mod.gov.bn" <'halimah.tuah@mod.gov.bn'>, "martinah.tamit@env.gov.bn" <'martinah.tamit@env.gov.bn'>, "halimah.tuah@mod.gov.bn" <'haryanti.petra@env.gov.bn'>, "noorhadini.saini@env.gov.bn" <'noorhadini.saini@env.gov.bn'>, "monyneath@czmcam.org" <'monyneath@czmcam.org'>, "povth@yahoo.com.sg" <'povth@yahoo.com.sg'>, "kampongspeu@yahoo.com" <'kampongspeu@yahoo.com'>, ajustianto <ajustianto@gmail.com>, "mbakyuning@yahoo.com" <'mbakyuning@yahoo.com'>, "kerjasama.bli" <kerjasama.bli@gmail.com>, "duhita.lusiya@gmail.com" <'duhita.lusiya@gmail.com'>, "jhonnyholbert@gmail.com" <'jhonnyholbert@gmail.com'>, "bilateral.klhk" <bilateral.klhk@gmail.com>, "iamhani@yahoo.com" <'iamhani@yahoo.com'>, "s.vilavong_ems@yahoo.com" <'s.vilavong_ems@yahoo.com'>, "sthandaroo@gmail.com" <'sthandaroo@gmail.com'>, "Zarchihlathan1982@gmail.com" <'Zarchihlathan1982@gmail.com'>, "jonasrleones@gmail.com" <'jonasrleones@gmail.com'>, "jonasrleones@hotmail.com" <'jonasrleones@hotmail.com'>, "oueiea.denr@gmail.com" <'oueiea.denr@gmail.com'>, "amaromarsjr@yahoo.com" <'amaromarsjr@yahoo.com'>, "amaromarsjr@gmail.com" <'amaromarsjr@gmail.com'>, "Ondet_ferrer@yahoo.com" <'Ondet_ferrer@yahoo.com'>, "llarinamojica@gmail.com" <'llarinamojica@gmail.com'>, "psddivision@gmail.com" <'psddivision@gmail.com'>, "Ranjeet_Singh@mewr.gov.sg" <'Ranjeet_Singh@mewr.gov.sg'>, "WOO_Yong_Keong@mewr.gov.sg" <'WOO_Yong_Keong@mewr.gov.sg'>, "Cecilia_KOH@mewr.gov.sg" <'Cecilia_KOH@mewr.gov.sg'>, "Eugene_CHEAH@mewr.gov.sg" <'Eugene_CHEAH@mewr.gov.sg'>, "Mohana_SELVAM@mewr.gov.sg" <'Mohana_SELVAM@mewr.gov.sg'>, "jatuporn.b@mnre.go.th" <'jatuporn.b@mnre.go.th'>, "pavichk@gmail.com" <'pavichk@gmail.com'>, "kheawsaard@yahoo.com" <'kheawsaard@yahoo.com'>, "nong_pe@hotmail.com" <'nong_pe@hotmail.com'>, "nmcuong68@gmail.com" <'nmcuong68@gmail.com'>, "asoenvietnam@vea.gov.vn" <'asoenvietnam@vea.gov.vn'>, Environment Division <EnvironmentDivision@asean.org>

AWGESC Chairperson

AWGESC National Focal Points

Copy to:

ASOEN Chairperson

ASOEN National Focal Points

Subject: [AWGESC] Letter on Nomination of Cities and Members of Selection Panel for the 5th ASEAN ESC Award and 4th Certificate of Recognition 2021

Dear Sir/Madam,

Greetings from the ASEAN Secretariat.

This is with reference to the Report of the 18th Meeting of ASEAN Working Group on Environmentally Sustainable Cities held on 25 June 2020 via video conference and the 31st Meeting of ASEAN Senior Officials on the Environment (ASOEN) held on 24-25 November 2020 via video conference regarding the preparations for the 5th ASEAN ESC Award and 4th Certificate of Recognition 2021.

In relation to the above, we would like to convey the letter from the Head of Environment Division, ASEAN Secretariat on the Nomination of Cities and Members of Selection Panel for the 5th ASEAN ESC Award and 4th Certificate of Recognition.

We would appreciate receiving the nomination of cities and members of the selection panel preferably by 31 March 2021. Please submit the duly completed forms along with cover letter from respective ASOEN National Focal Point and any enclosures (e.g. photos, video) to:

Dr. Nagulendran Kangayatkarasu

Chairperson of ASEAN Working Group on Environmentally Sustainable Cities

Deputy Secretary General (Environment)

Ministry of Environment and Water (KASA)

Malaysia

Email: esc2021@kasa.gov.my

Copy to ASEAN Secretariat:

Email: asean.escaward@gmail.com

Kindly find attached the following documents for your kind reference:

- Letter from the Head of the Environment Division, ASEAN Secretariat on Nomination of Cities and Members of (i) Selection Panel for the 5th ASEAN ESC Award and 4th Certificate of Recognition 2021;
- Guidelines for the Nomination of Cities for the ASEAN Environmentally Sustainable Cities (ESC) Award and (ii) Certificate of Recognition 2021;
- (iii) ANNEX A: Nomination Form;
- (iv) ANNEX B: Synopsis Form;
- ANNEX C: ESC Key Indicators Form; (v)
- (vi) Nomination Form for Member of Selection Panel

Thank you for your continued support and cooperation.

Regards,

Putri

ASEAN Secretariat | 70 A Jalan Sisingamangaraja | Jakarta 12110 Indonesia

A COMMUNITY OF OPPORTUNITIES

www.asean.org | twitter.com/asean | facebook.com/aseansecretariat

This email is confidential. Any usage of the content in or attachments to this email by non-intended recipient is unlawful. .

6 attachments

- (iii) ANNEX A City Nomination Form.docx
- (iv) ANNEX B Synopsis Form.docx 99K
- (v) ANNEX C ESC Key Indicators Form.docx 84K
- (vi) Nomination Form_ Member of Selection Panel 2021.docx
- (i) !Letter to AWGESC (ESC Award 2021).pdf 533K
- (ii) Guidelines ESC Award and Certificate Recognition 2021 (9July) MY&SG....docx 271K

Ref: ASCC/SDD/ENV/ESC_Award2021/004

14 January 2021

AWGESC Chairperson
AWGESC National Focal Points

Copy to:
ASOEN Chairperson
ASOEN National Focal Points

Dear Sir/Madam,

Subject: Nomination of Cities and Members of Selection Panel for the 5th ASEAN ESC Award and 4th Certificate of

Recognition 2021

ASSOCIATION OF SOUTHEAST ASIAN NATIONS

The ASEAN Secretariat 70 A Jl. Sisingamangaraja Jakarta 12110 Indonesia

Phone: (62-21) 726 2991 (62-21) 724 3372 Fax: (62-21) 739 8234 (62-21) 724 3504

public@asean.org www.asean.org

- 1. We wish to refer to the Report of the 18th Meeting of the ASEAN Working Group on Environmentally Sustainable Cities (AWGESC), held on 25 June 2020 via video conference, with regard to preparations for the 5th ASEAN ESC Award and 4th Certificate of Recognition 2021 as follows:
 - a. The Meeting noted that the 5th ASEAN ESC Award and the 4th Certificates of Recognition will be held back-to-back with the 16th ASEAN Ministerial Meeting on Environment (AMME) in 2021 in Indonesia. The Meeting expressed appreciation to Indonesia for its confirmation via a letter to the ASEAN Secretariat that Indonesia will shoulder the cost of conduct of the 5th ASEAN ESC Award 2021 and the 4th Certificates of Recognition Ceremony, including the production of the trophies.
 - b. The Meeting endorsed the ASEAN ESC Award mechanism for consideration of ASOEN, as follows:
 - (i) Each AMS to nominate one city each to receive the ASEAN ESC Award, and in addition, up to six cities to be conferred with the certificate of recognition on a competitive basis using the criteria developed by AWGESC;
 - (ii) AWGESC to use the most updated ASEAN ESC Key Indicators for Clean Air, Clean Land and Clean Water along with Singapore Index on Biodiversity (SI) as bonus indicator for the assessment of cities for the ASEAN ESC Award and ASEAN Certificate of Recognition:

- (iii) AWGESC to establish a selection panel consisting of one representative from each AMS. The selection panel meeting will be held back-to-back with the Meeting of AWGESC to review the cities nominations and provide recommendation to ASOEN:
- (iv) Cities that have been nominated for ASEAN ESC Award shall not be considered for certificate of recognition;
- (v) Each AMS that has indicated nomination for more than one indicator (Clean Air, Clean Water, Clean Land), to select the most appropriate indicator;
- c. The Meeting endorsed the guidelines for nomination of cities for the 5th ASEAN ESC Award and 4th Certificate of Recognition, as in **ANNEX 8**. The Meeting noted that the AWGESC will inform the ASEAN Secretariat of the nomination of members for the selection panel.
- 2. Furthermore, the 31^{st} Meeting of ASEAN Senior Officials on the Environment (ASOEN) held on 24-25 November 2020 via video conference endorsed the ASEAN ESC Award Mechanism for the 5^{th} ASEAN ESC Award 2021 and 4^{th} Certificates of Recognition.
- 3. In this regard, we herewith would like to request for nominations of cities and members of the selection panel for the 5th ASEAN Environmentally Sustainable City (ESC) Award and 4th Certificate of Recognition. Please find enclosed the following for your kind reference and action:
 - Guidelines for the Nomination of Cities for the ASEAN Environmentally Sustainable Cities (ESC) Award and Certificate of Recognition 2021;
 - ANNEX A: Nomination Form;
 - ANNEX B: Synopsis Form;
 - ANNEX C: ESC Key Indicators Form;
 - Nomination Form for Member of Selection Panel
- 4. We would appreciate receiving the nomination of cities and members of the selection panel preferably **by 31 March 2021**. Please submit the duly completed forms along with cover letter from respective ASOEN National Focal Point and any enclosures (e.g. photos, video) to:

Dr. Nagulendran Kangayatkarasu

Chairperson of ASEAN Working Group on Environmentally Sustainable

Deputy Secretary General (Environment)
Ministry of Environment and Water (KASA)

Malaysia

Email: esc2021@kasa.gov.my

Copy to ASEAN Secretariat:

Email: asean.escaward@gmail.com

Thank you for your continued support and cooperation.

Yours sincerely,

Dr. Vong Sok

Head of the Environment Division Sustainable Development Directorate

ASEAN Socio-Cultural Community Department

GUIDELINES

FOR THE NOMINATION OF CITIES FOR THE ASEAN ENVIRONMENTALLY SUSTAINABLE CITIES (ESC) AWARD AND CERTIFICATE OF RECOGNITION 2021

The information in these Guidelines is documented based on the reports of the meetings of the ASEAN Working Group on Environmentally Sustainable Cities and previous ESC awards practices.

AWARD CATEGORY

ESC Award

Certificate of Recognition:

Category	T .	Indicator	
Small Cities (population of 20,000 to 750,000)	Clean Air	Clean Water	Clean Land
Big Cities (population of 750,000 – 1,500,000)	Clean Air	Clean Water	Clean Land

NOMINATION

 Each AMS shall submit a duly completed Nomination Form as in ANNEX A and supporting documents (synopsis, photos and video clips) to the AWGESC Chair (Malaysia) and the ASEAN Secretariat by the set deadline.

ESC Award

 Each AMS is to nominate 1 (one) city based on national ESC criteria.

Certificate of Recognition (Optional)

- Each AMS may nominate 1 (one) city for each category and indicator) (total of possible 6 (six) different cities) to be considered on a competitive basis using the current Key Indicators for Clean Air, Clean Land and Clean Water to receive the certificate of recognition.
- Cities that have been nominated for ASEAN ESC Award should not be nominated for certificate of recognition.
- Each city can only be nominated for one category (big / small cities) and one indicator (Clean Air / Clean Water / Clean Land) (No same city should be nominated for more than one indicator).

SYNOPSIS

- The nomination shall be accompanied with a synopsis of 300-500 words written in English for each nominated city, providing description on how the nominated city met the respective national criteria, their outstanding characteristics in terms of environmental performance.
- The synopsis shall be submitted in Microsoft Word document (.doc) format, as in ANNEX B.

PHOTOS

- The nomination shall be accompanied with 2 to 3 photos for each nominated city, showcasing the outstanding characteristics of the city in terms of environmental performance.
- Each photo shall be submitted in JPEG format with minimum of 1024x768 pixels and 300 dpi, and not exceeding 8MB.

VIDEO CLIP

(applicable to ESC Award nomination)

- The nomination shall be accompanied by 1 (one) short video clip that profiles the environmental performance of the nominated city of the ESC Award. It may also highlight environmental issues in the respective city and the initiatives taken by the government / private sector / IGOs / NGOs / community groups to address the issues. The initiatives highlighted in the video clip shall be, as much as possible, unique, creative, indigenous and impactful.
- The video clip may be produced by the government (relevant ministry) or any organization / individual approved by the government (the government may invite submissions of video clips through national competition, for example, at their own expense)
- The duration of the video clip shall be no more than 2 (two) minutes in total.
- The language spoken / written in the video clip shall be in English or in local language with English subtitle
- The video clip shall be submitted in avi or mp4 format. The video clip shall have good visual quality for projector screening.
- The submitting organization possesses the copyright and/or any other propriety rights to the video clip.

KEY PERFORMANCE INDICATOR

(applicable to Certificate of Recognition nomination)

Nomination of city for Certificate of Recognition shall be accompanied by duly completed ESC Key Indicators Form as in ANNEX C

TIMELINE

- AMS shall submit their nomination of cities, together with official nomination letter signed by ASOEN National Focal Point, synopsis, photos and video clips to the AWGESC Chair (Malaysia) and the ASEAN Secretariat preferably by 31 March 2021.
- AWGESC will meet and conduct the selection at the 19th AWGESC Meeting in 2021 and provide recommendation to the 32nd Meeting of ASOEN in 2021.
- The 5th ASEAN Environmentally Sustainable City (ESC) Award and 4th Certificate of Recognition Presentation Ceremony will be held back-to-back with the 16th ASEAN Ministerial Meeting on Environment (AMME) in 2021 in Indonesia.

SUBMISSION

The nomination form, official nomination letter signed by ASOEN National Focal Point, synopsis, photos and video clip shall be submitted preferably by <u>31 March 2021</u> in a form of softcopy through:

• Email (with attachments or links to cloud storage)

Email shall be sent to AWGESC Chair (Malaysia) and ASEAN Secretariat at the following address:

Dr. Nagulendran Kangayatkarasu

Chairperson of ASEAN Working Group on Environmentally Sustainable Cities Deputy Secretary General (Environment) Ministry of Environment and Water (KASA) Malaysia

Email: esc2021@kasa.gov.my

Copy to ASEAN Secretariat:

Email: asean.escaward@gmail.com

NOMINATION FORM FOR THE 5TH ASEAN ENVIRONMENTALLY SUSTAINABLE CITIES (ESC) AWARD AND 4TH CERTIFICATE OF RECOGNITION 2021

Please refer to the accompanying nomination guidelines before completing this form.

COLL	NTRY:	
SECT	TION 1: ASEAN ESC AWARD NOMINATION	
Pleas	se complete the boxes below.	
Mami	noted City	
	nated City:	
Provi		
	Focal Point:	
Name		
	nation:	
	nisation:	
	e No.:	
Fax:		
Email	Address:	
Pleas	se complete the checklist/requirements below.	
_		
No.	Checklist	Tick if provided
1.	Synopsis of the nominated city	П
	(300-500 words in template provided in ANNEX B)	
2.	Photos of the nominated city	
	(2-3 photos, each in JPEG format min 1024x768 pixels, 300 dpi,	
	not exceeding 8MB)	
3.	Video clip of the nominated city	

(max. 2 minutes with English subtitle in .avi or .mp4 format)

SECTION 2: CERTIFICATE OF RECOGNITION

Please complete and tick the appropriate boxes below.

City:	
Province:	
Category :	☐ Big cities (population of 750,000 – 1,500,000)
	Small cities (population of 20,000 to 750,000)
	Clean Air
	☐ Clean Water
	☐ Clean Land
City Focal point:	
Name:	
Designation:	
Organisation:	
Phone No.:	
Fax:	
Email Address:	

Please complete the checklist/requirements below.

No.	Checklist	Tick if provided
1.	Synopsis of the nominated city (300-500 words in template provided in ANNEX B)	
2.	Photos of the nominated city (2-3 photos, each in JPEG format min 1024x768 pixels, 300 dpi, not exceeding 8MB)	
3.	Duly completed ESC Key Indicators Form (Form in ANNEX C)	

SECTION 3: PLEASE SEND THIS FORM, ALONG WITH COVER LETTER FROM RESPECTIVE ASOEN, AND ANY ENCLOSURES TO:

Dr. Nagulendran Kangayatkarasu

Chairperson of ASEAN Working Group on Environmentally Sustainable Cities Deputy Secretary General (Environment)
Ministry of Environment and Water (KASA)
Malaysia

Email: esc2021@kasa.gov.my

Copy to ASEAN Secretariat:

Email: asean.escaward@gmail.com

Deadline: 31 March 2021

SYNOPSIS

FOR THE 5th ASEAN ENVIRONMENTALLY SUSTAINABLE CITIES (ESC) AWARD AND 4th CERTIFICATE OF RECOGNITION 2021

Please refer to the accompanying nomination guidelines before completing this form.							
<u> </u>	<u> </u>		TOTITI.				
COUNTRY:							
SECTION 1: DETAILS	OF NO	MINATED	CITY				
City:			***	· · · · · · · · · · · · · · · · · · ·			
Province:							
City Focal point:	(name	e, designation	on, organizatio	n, address, c	ontact details)		
Please tick relevant cate	egory o	of nominatio	on.		_		
☐ ASEAN ESC Awa	ard						
Certificate of Rec	cogniti	on					
Small Cities Clean Air Clean Clean							
(population of 20,000 to Water Land							
750,000)							
Big Cities		Clean Air	Clean	Clean			

Water

Land

SECTION 2: SYNOPSIS

(population of 750,000 -

1,500,000)

Please complete all of the questions below (300-500 words)

1. Describe basic information of the nominated city (geographical location, area
size, population, etc)
2. Describe how the nominated city met the respective national criteria.

3. Describe the outstanding of environmental performance.	characteristics	of	the	nominated	city	in	terms
por on the same por one same and the same an							
				· · · · · · · · · · · · · · · · · · ·			
4. Provide other additional infor	mation if any						
	······································						

KEY INDICATORS FOR CLEAN AIR, CLEAN LAND AND CLEAN WATER FOR ASSESSMENT OF CITIES FOR THE 4th CERTIFICATE OF RECOGNITION 2021

COUNTRY:	
Please fill inform	ation only in one of the categories that the city is nominated for (either
Clean Air, Clean A. Clean Air	Water, or Clean Land).
	Water, or Clean Land).
A. Clean Air	Water, or Clean Land).
A. Clean Air City:	Water, or Clean Land). Big cities (population of 750,000 – 1,500,000)

No.	Indicators	Please fill here	Measures	Performance Score
1.	Number of days in a year that		nd < 15	100
	Pollutant Standards Index (PSI)		15 ≤ nd < 30	80
	exceeded 100 ('unhealthy') using		30 ≤ nd < 45	60
	USEPA standard		45 ≤ nd < 60	40
			60 ≤ nd < 90	20
			90 ≤ nd ≤ 120	10
			120 ≤ nd ≤ 150	5
			nd > 150	0
2.	Number of days in a year ambient 4 key parameters (CO, SO2, NO2, PM10) levels exceeded the USEPA air quality standards			
	Number of days in a year for CO		nd < 15	100
	levels		15 ≤ nd < 30	80
			30 ≤ nd < 45	60
			45 ≤ nd < 60	40
			60 ≤ nd < 90	20
			90 ≤ nd ≤ 120	10
			120 ≤ nd ≤ 150	5
			nd > 150	0

ANNEX C - ESC KEY INDICATORS

		ANNEX C – ESC KEY	INDICATORS
	Number of days in a year for SO2	nd < 15	100
	levels	15 ≤ nd < 30	80
	104010	30 ≤ nd < 45	60
		i i i i i i i i i i i i i i i i i i i	
		45 ≤ nd < 60	40
		60 ≤ nd < 90	20
		90 ≤ nd ≤ 120	10
		120 ≤ nd ≤ 150	5
		nd > 150	•
		11d × 150	
			0
	N of do in for NOO	-1.45	
	Number of days in a year for NO2	nd < 15	100
	levels	15 ≤ nd < 30	80
	}	30 ≤ nd < 45	60
1		45 ≤ nd < 60	40
		60 ≤ nd < 90	20
		90 ≤ nd ≤ 120	10
		120 ≤ nd ≤ 150	5
		nd > 150	0
	Number of days in a year for PM10	nd < 15	100
	levels	15 ≤ nd < 30	80
	107010	30 ≤ nd < 45	60
		45 ≤ nd < 60	40
		60 ≤ nd < 90	20
		90 ≤ nd ≤ 120	10
		120 ≤ nd ≤ 150	5
		nd > 150	0
3.	% Gasoline and Diesel fueled-	110	
0.	i .		
	vehicles that meet city/national		
	standards during roadside		
	inspection		
-	% gasoline fueled-vehicles that meet	1 < gas < 10	10
1	city/national standards	10 ≤ gas < 25	25
	ony/manorial otaliaalaa	25 ≤ gas < 50	50
		50 ≤ gas < 75	75
		75 ≤ gas ≤ 100	100
	% diesel fueled-vehicles that meet	1 < gas < 10	10
	city/national standards	10 ≤ gas < 25	25
	·	25 ≤ gas < 50	50
		50 ≤ gas < 75	75
		75 ≤ gas ≤ 100	100
4.	% industries that fulfill the	1 < fi < 10	10
	requirement of national standards	10 ≤ fi < 25	25
		25 ≤ fi < 50	50
		50 ≤ fi < 75	75
F	0/ of alternative feets	75 ≤ fi ≤ 100	100
5.	% of alternative fuels used	< 1	10
		1 ≤ af < 2	25
		2 < af < 3	50
		3 < af < 4	75
		> 4	100
'		~ 7	100

nd = number of days gas = gasoline/diesel fi = industries af = alternative fuels

B. Clean Water

City:	
Province:	
Category:	☐ Big cities (population of 750,000 − 1,500,000) ☐ Small cities (population of 20,000 to 750,000)

No.	Indicators	Please fill here	Measures	Performance Score
1.	% households with access to potable	nere	1 ≤ ha < 10	10
'•	water infrastructure		10 ≤ ha < 20	20
	water infrastructure		20 ≤ ha < 40	40
			40 ≤ ha < 60	60
			60 ≤ ha < 80	80
			80 ≤ ha ≤ 100	100
2.	% households with tap water that		1 < ws < 10	10
	meets WHO drinking water standard		10 ≤ ws < 20	20
	moto vi io drinking vator standard		20 ≤ ws < 40	40
			40 ≤ ws < 60	60
			60 ≤ ws < 80	80
			80 ≤ ws ≤ 100	100
3.	% households and industries linked to		1 ≤ ws < 10	10
••	sewerage system or equivalent where		10 ≤ ws < 20	20
	discharge meets national standards		20 ≤ ws < 40	40
	g g g		40 ≤ ws < 60	60
			60 ≤ ws < 80	80
			80 ≤ ws ≤ 100	100
4.	% capacity of city in supplying water		≤ 25	25
	to meet average consumption		25 < cs ≤ 50	50
			50 < cs ≤ 90	75
			>90	100
5.	% of available freshwater from ground		<1000	0
	and surface water extracted for use		1000 ≤ aw < 1400	10
			1400 ≤ aw < 1600 1600 ≤ aw < 1700	20 40
			1700 ≤ aw < 1700	60
			1800 ≤ aw < 1900	80
			1900 ≤ aw < 2000	90
	0/		≥ 2000	100
6.	% school at all levels with water		1< sc < 10	10
	conservation education programs		10 ≤ sc < 20	20
			20 ≤ sc < 40	40
			40 ≤ sc < 60	60
			60 ≤ sc < 80	80
	In a household access		80 ≤ sc ≤ 100	100

ha = household access
 ws = meets water standard
 cs = capacity to supply
 aw = available water/number of population
 sc = school

C. Clean Land

City:	
Province:	
Category:	☐ Big cities (population of 750,000 – 1,500,000)
	Small cities (population of 20,000 to 750,000)

No.	Indicators	Please fill here	Measures	Performance Score
1.	% waste at source that is stored in		0< wa< 15	100
	dedicated holding areas/receptacles		15 ≤ wa < 30	80
	before being disposed promptly		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	40
			wa > 60	20
2.	% waste collected from door to		0< wa< 15	20
	door/collection point		15 ≤ wa < 30	40
	,		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
3.	% waste transported in covered		0< wa< 15	20
	vehicles on a daily basis		15 ≤ wa < 30	40
	•		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
4.	overall recycling rate (% recycled		0< wa< 15	20
	waste from the whole ones)		15 ≤ wa < 30	40
	,		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
5.	% reduction in total waste generated a		0< wa< 15	20
	year		15 ≤ wa < 30	40
			30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
6.	% green area from total area of the		1< ga< 7	20
	city		7 ≤ ga < 15	40
			15 ≤ ga < 23	60
			23 ≤ ga < 30	80
			ga ≥ 30	100
7.	% area that comply the stipulated		1< co< 20	20
	spatial plan of the city		20 ≤ co < 40	40
			40 ≤ co < 60	60
			60 ≤ co < 80	80
			≥ 80	100
8.	Number of Singapore Index indicators		1 ≤ si < 4	20
	applied.* (Bonus Indicator)		5 ≤ si≤ 8	40
			9 ≤ si ≤ 12	60
	*Applications that are mandatory:		13 ≤ si ≤ 17	80
	Indicators 1 (Proportion of Natural Areas in the City) and 11 (Regulation of Quantity of Water).		18 ≤ si ≤ 23	100
	ra = waste			

wa = waste ga = green area co = compliance

NOMINATION FORM FOR THE 5th ASEAN ENVIRONMENTALLY SUSTAINABLE CITIES (ESC) AWARD AND 4th CERTIFICATE OF RECOGNITION 2021

Please refer to the accompanying nomination guidelines before completing this form.

	101				
COU	INTRY:				
SEC	TION 1: ASEAN ESC AWARD NOMINATION				
Plea	se complete the boxes below.				
Nom	inated City:				
	rince:				
City	Focal Point:				
Nam	T-10-1				
Desig	gnation:				
Orga	nisation:				
Phon	ne No.:				
Fax:					
Emai	il Address:				
Plea	se complete the checklist/requirements below.				
No.	Checklist	Tiple if provided			
	Cileckiist	Tick if provided			
1.					
	(300-500 words in template provided in ANNEX B)				
2.	Photos of the nominated city				
	(2-3 photos, each in JPEG format min 1024x768 pixels, 300 dpi,				
	not exceeding 8MB)				
3.	Video clip of the nominated city				
	(max, 2 minutes with English subtitle in .avi or .mp4 format)				

SECTION 2: CERTIFICATE OF RECOGNITION

Please complete and tick the appropriate boxes below.

City:	
Province:	
Category :	☐ Big cities (population of 750,000 – 1,500,000)
	Small cities (population of 20,000 to 750,000)
	Clean Air
	Clean Water
	☐ Clean Land
City Focal point:	
Name:	
Designation:	
Organisation:	
Phone No.:	
Fax:	
Email Address:	

Please complete the checklist/requirements below.

No.	Checklist	Tick if provided
1.	Synopsis of the nominated city (300-500 words in template provided in ANNEX B)	
2.	Photos of the nominated city (2-3 photos, each in JPEG format min 1024x768 pixels, 300 dpi, not exceeding 8MB)	
3.	Duly completed ESC Key Indicators Form (Form in ANNEX C)	

SECTION 3: PLEASE SEND THIS FORM, ALONG WITH COVER LETTER FROM RESPECTIVE ASOEN, AND ANY ENCLOSURES TO:

Dr. Nagulendran Kangayatkarasu

Chairperson of ASEAN Working Group on Environmentally Sustainable Cities Deputy Secretary General (Environment)
Ministry of Environment and Water (KASA)
Malaysia

Email: esc2021@kasa.gov.my

Copy to ASEAN Secretariat:

Email: asean.escaward@gmail.com

Deadline: 31 March 2021

SYNOPSIS

FOR THE 5th ASEAN ENVIRONMENTALLY SUSTAINABLE CITIES (ESC) AWARD AND 4th CERTIFICATE OF RECOGNITION 2021

Please refer to the accompanying nomination guidelines before completing this

form.					
COUNTRY:					
SECTION 1: DETAILS OF	NOMINATED	CITY			
City:					
Province:					
City Focal point: (n	ame, designati	on, organizati	on, address,	contact details)	
Please tick relevant categories ASEAN ESC Award		on.		٦	
☐ Certificate of Recog	gnition			7	
Small Cities	Clean Air	Clean	Clean	7	
(population of 20,000 to		Water	Land		
750,000)					
Big Cities	Clean Air	Clean	Clean	7	
(population of 750,000 -		Water	Land		
1,500,000)					

SECTION 2: SYNOPSIS

Please complete all of the questions below (300-500 words)

1. Describe basic information of	of the	nominated	city	(geographical	location,	area
size, population, etc)						
2. Describe how the nominated c	itv me	et the respec	ctive	national criteri	a.	· · · · ·
	y	М				

3. Describe the outstandi of environmental performance	ng characteristics	of the	nominated	city	in terms	
4. Provide other additional ir	formation if any		<u> </u>			
	-					

KEY INDICATORS FOR CLEAN AIR, CLEAN LAND AND CLEAN WATER FOR ASSESSMENT OF CITIES FOR THE 4th CERTIFICATE OF RECOGNITION 2021

col	JNTRY:				
Clea		on only in one of the ca lter, or Clean Land).	tegories that the o	city is nominated t	or (either
City	•				· · · · · · · · · · · · · · · · · · ·
Prov	/ince:				
Cate	egory:		ition of 750,000 – ulation of 20,000 to		
No.		ndicators	Please fill here	Measures	Performance Score
1.	1	ys in a year that		nd < 15	100

No.	Indicators	Please fill here	Measures	Performance Score
1.	Number of days in a year that		nd < 15	100
	Pollutant Standards Index (PSI)		15 ≤ nd < 30	80
	exceeded 100 ('unhealthy') using		30 ≤ nd < 45	60
	USEPA standard		45 ≤ nd < 60	40
			60 ≤ nd < 90	20
			90 ≤ nd ≤ 120	10
			120 ≤ nd ≤ 150	5
			nd > 150	0
2.	Number of days in a year ambient 4 key parameters (CO, SO2, NO2, PM10) levels exceeded the USEPA air quality standards			
	Number of days in a year for CO		nd < 15	100
	levels		15 ≤ nd < 30	80
			$30 \le \text{nd} < 45$	60
			45 ≤ nd < 60	40
			60 ≤ nd < 90	20
			90 ≤ nd ≤ 120	10
			120 ≤ nd ≤ 150	5
			nd > 150	0

ANNEX C - ESC KEY INDICATORS

		ANNEX C - ESC KEY	INDICATORS
	Number of days in a year for SO2	nd < 15	100
	levels	15 ≤ nd < 30	80
		30 ≤ nd < 45	60
		45 ≤ nd < 60	40
		60 ≤ nd < 90	20
		90 ≤ nd ≤ 120	10
		120 ≤ nd ≤ 150	5
		nd > 150	·
		110 100	
		1 - 45	0
}	Number of days in a year for NO2	nd < 15	100
	levels	15 ≤ nd < 30	80
		30 ≤ nd < 45	60
		45 ≤ nd < 60	40
		60 ≤ nd < 90	20
	}	90 ≤ nd ≤ 120	10
	1	120 ≤ nd ≤ 150	5
		nd > 150	0
	Number of days in a year for PM10	nd < 15	100
	levels	15 ≤ nd < 30	80
	<u> </u>	30 ≤ nd < 45	60
		45 ≤ nd < 60	40
		60 ≤ nd < 90	20
		90 ≤ nd ≤ 120	10
		120 ≤ nd ≤ 150	5
		nd > 150	Ö
3.	% Gasoline and Diesel fueled-	1100	
"	vehicles that meet city/national		
	standards during roadside		
	inspection		
	% gasoline fueled-vehicles that meet	1 < gas < 10	10
	city/national standards	10 ≤ gas < 25	25
	Gity/Hational Standards	25 ≤ gas < 50	50
		25 ≤ gas < 50 50 ≤ gas < 75	75
			100
	0/ diagol fuolad vahialas that was at	75 ≤ gas ≤ 100	
	% diesel fueled-vehicles that meet	1 < gas < 10	10
	city/national standards	10 ≤ gas < 25	25
		25 ≤ gas < 50	50
		50 ≤ gas < 75	75
		75 ≤ gas ≤ 100	100
4.	% industries that fulfill the	1 < fi < 10	10
	requirement of national standards	10 ≤ fi < 25	25
		25 ≤ fi < 50	50
		50 ≤ fi < 75	75
		75 ≤ fi ≤ 100	100
5.	% of alternative fuels used	< 1	10
		1 ≤ af < 2	25
		2 < af < 3	50
		3 < af < 4	75
}		> 4	100
- 2	d = number of days	<u> </u>	

nd = number of days gas = gasoline/diesel fi = industries af = alternative fuels

B. Clean Water

City:	
Province:	
Category:	☐ Big cities (population of 750,000 − 1,500,000) ☐ Small cities (population of 20,000 to 750,000)

No.	Indicators	Please fill	Measures	Performance
		here		Score
1.	% households with access to potable		1 ≤ ha < 10	10
	water infrastructure		10 ≤ ha < 20	20
			20 ≤ ha < 40	40
			40 ≤ ha < 60	60
			60 ≤ ha < 80	80
			80 ≤ ha ≤ 100	100
2.	% households with tap water that		1 < ws < 10	10
	meets WHO drinking water standard		10 ≤ ws < 20	20
	_		20 ≤ ws < 40	40
			40 ≤ ws < 60	60
			60 ≤ ws < 80	80
			80 ≤ ws ≤ 100	100
3.	% households and industries linked to		1 ≤ ws < 10	10
	sewerage system or equivalent where		10 ≤ ws < 20	20
	discharge meets national standards		20 ≤ ws < 40	40
			40 ≤ ws < 60	60
			60 ≤ ws < 80	80
L			80 ≤ ws ≤ 100	100
4.	% capacity of city in supplying water		≤ 25	25
	to meet average consumption		25 < cs ≤ 50	50
			50 < cs ≤ 90	75
			>90	100
5.	% of available freshwater from ground		<1000	0
	and surface water extracted for use		1000 ≤ aw < 1400	10
			1400 ≤ aw < 1600 1600 ≤ aw < 1700	20 40
			1700 ≤ aw < 1700	60
			1800 ≤ aw < 1900	80
			1900 ≤ aw < 2000	90
			≥ 2000	100
6.	% school at all levels with water		1< sc < 10	10
	conservation education programs		10 ≤ sc < 20	20
			20 ≤ sc < 40	40
			40 ≤ sc < 60	60
			60 ≤ sc < 80	80
	a = household acress		80 ≤ sc ≤ 100	100

ha = household access
 ws = meets water standard
 cs = capacity to supply
 aw = available water/number of population
 sc = school

C. Clean Land

City:	
Province:	
Category:	☐ Big cities (population of 750,000 – 1,500,000)
	Small cities (population of 20,000 to 750,000)

No.	Indicators	Please fill here	Measures	Performance Score
1.	% waste at source that is stored in		0< wa< 15	100
	dedicated holding areas/receptacles		15 ≤ wa < 30	80
	before being disposed promptly		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	40
			wa > 60	20
2.	% waste collected from door to		0< wa< 15	20
	door/collection point		15 ≤ wa < 30	40
	·		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
3.	% waste transported in covered		0< wa< 15	20
	vehicles on a daily basis		15 ≤ wa < 30	40
			30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
4.	overall recycling rate (% recycled		0< wa< 15	20
	waste from the whole ones)		15 ≤ wa < 30	40
	,		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
5.	% reduction in total waste generated a		0< wa< 15	20
	year		15 ≤ wa < 30	40
	•		30 ≤ wa < 45	60
			45 ≤ wa ≤ 60	80
			wa > 60	100
6.	% green area from total area of the		1< ga< 7	20
	city		7 ≤ ga < 15	40
	, in the second		15 ≤ ga < 23	60
			23 ≤ ga < 30	80
			ga ≥ 30	100
7.	% area that comply the stipulated		1< co< 20	20
	spatial plan of the city		20 ≤ co < 40	40
			40 ≤ co < 60	60
			60 ≤ co < 80	80
			≥ 80	100
8.	Number of Singapore Index indicators		1 ≤ si < 4	20
	applied.* (Bonus Indicator)		5 ≤ si≤ 8	40
			9 ≤ si ≤ 12	60
	*Applications that are mandatory:		13 ≤ si ≤ 17	80
	Indicators 1 (Proportion of Natural Areas in the City) and 11 (Regulation of Quantity of Water).		18 ≤ si ≤ 23	100
	a = waste			

wa = waste ga = green area co = compliance

NOMINATION FORM

MEMBER OF THE SELECTION PANEL FOR THE 5TH ASEAN ESC AWARD AND 4TH CERTIFICATE OF RECOGNITION 2021

Country	:	
Name Position Agency/Ministry	: (Mr/Ms/Dr)	
review the cities non	ninations and provide recommendation	tend the Selection Panel Meeting to on to the 32 nd Meeting of ASOEN in ack with the 19 th Meeting of AWGESC
Nominated Me	ember of Panel	National Focal Point of AWGESC
,	,	(